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ABSTRACT

In this paper we apply the fibering method of Pohozaev and the notion of

extremal values introduced by Il’yasov to a Schrödinger–Poisson system,

with prescribed L2 norm of the unknown, in the whole R3. The method

makes clear the role played by the special exponents p = 3, p = 8/3,

p = 10/3.

In addition to showing that old results can be obtained in a unified

way, we exhibit also new ones.
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1. Introduction

It is well-known that the following Schrödinger equation (where all the physical

constants are normalized to unity),

(1.1) i∂tψ = −Δxψ + q(| · |−1 ∗ |ψ|2)ψ − λ|ψ|8/3ψ, ψ : R3 × R → C,

has a relevant role in many physical models. Here i is the imaginary unit, Δx

is the Laplacian with respect to the spatial variables, ∗ is the x-convolution

and q, λ are positive parameters.
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As we can see, two types of potentials, different in nature, appear in the

equation: the first one is the Hartree (or Coulomb) potential given by

VH(·, t) = | · |−1 ∗ |ψ(·, t)|2

which is nonlocal and the second one is the Slater approximation of the exchange

term, given by |ψ|8/3ψ, which is local, although nonlinear. In this context q

and λ are also called, respectively, the Poisson constant which represents the

electric charge, and the Slater constant. The nonlocal potential can be seen

as “generated” by the same wave function ψ, in virtue of the Poisson equation

−ΔxVH = 4π|ψ|2.
A particular feature of (1.1) is that, due to the invariance by U(1) gauge-

transformations and the invariance by time translations, by the Noether theo-

rem, on the solutions ψ the quantities

M(ψ)(t) =

∫
|ψ(x, t)|2dx

and

E(ψ)(t) =
1

2

∫
|∇xψ(x, t)|2dx+

q

4

∫ ( 1

| · | ∗ |ψ(·, t)|
2
)
|ψ(x, t)|2dx

− 3λ

8

∫
|ψ(x, t)|8/3dx

are conserved in time. In physical terms they are called respectively mass and

energy of the solution.

Since the Hartree potential and the Slater term have different signs in the

energy functional, they are in competition and then a different behaviour of E is

expected depending on the values of the parameters q and λ. For more physical

details and the derivation of (1.1) see, e.g., the seminal works [6, 15, 18, 19, 25]

and the references therein. We mention that the above equation has been

derived also in the framework of Abelian Gauge Theories in [5] and called the

Schrödinger–Poisson system.

In this work we consider the problem of finding standing waves solutions

ψ(x, t) = u(x)e−i�t u : R3 → R, � ∈ R

to the above equation (1.1) under the mass constraint (as justified by the mass

conservation law) and where the exponent 8/3 is replaced by a more general p.
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More specifically, we consider the problem of finding � ∈ R and u ∈ H1(R3)

satisfying

(1.2)

⎧⎨
⎩−Δu+ qφuu− λ|u|p−2u = �u, in R3∫

u2 = r

(from now on all the integrals will be in R3 and dx will be omitted) where

• q, λ, r > 0 are given parameters,

• p ∈ (2, 6),

• φu∈D1,2(R3) is the unique solution of the Poisson equation−Δφ=4πu2

in R3, that can be represented, for u ∈ H1(R3), as

φu =
1

| · | ∗ u
2.

In particular we are interested in finding ground state solutions u, namely

the solutions with minimal energy in the sense specified below.

The usual way to attack the problem is by variational methods. Indeed the

weak solutions of equation (1.2) are easily seen to be critical points of the energy

functional

E(u) := Eq,λ(u) =
1

2

∫
|∇u|2 + q

4

∫
φuu

2 − λ

p

∫
|u|p,

constrained to the L2(R3) sphere

Sr =

{
u ∈ H1(R3) :

∫
u2 = r

}
,

as it follows by the Lagrange multiplier rule; in this case � ∈ R is the Lagrange

multiplier associated to the critical point. Then this problem fits into the ques-

tion of finding critical points of the energy on the mass constraint (see [4]).

An interesting problem is the search for ground states solutions, namely the

minima of E on Sr, since they give rise to stable standing waves solutions for

the evolution problem (1.1). The problem is not trivial since the behaviour of E

depends on q, λ, p but actually also the value r has a main role.

The search of minima for similar problems has been addressed by Lions in the

celebrated paper [16] where he studied the problem from a mathematical point

of view and established, roughly speaking, that the existence of minimizers is

equivalent to the strict sub-additive inequality

(1.3) inf
Sr

E < inf
Ss

E + inf
Sr−s

E, 0 < s < r.
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In turn, this is equivalent to showing that dichotomy does not occur when one

tries to apply the concentration-compactness principle of Lions (since the van-

ishing is avoided due to infSr E<0). As showed in recent papers, inequality (1.3)

does hold in certain intervals that depend on the values of p. See, e.g., Bellazzini

and Siciliano [2, 3], Catto and Lions [8], Sánchez and Soler [22], Jeanjean and

Luo [12], Catto et al. [7] and Colin and Watanabe [9].

We point out that in the last decades equations like (1.2), even without

the mass constraint, have been extensively studied due to the mathematical

challenges raised by the nonlocal term φu and its competition with the local

nonlinearity.

The aim of this paper is to establish, by using the fibration method of

Pohozaev developed in [20] and the notion of extremal values introduced in

Il’yasov [10], a general framework which permits us to search for global mini-

mizers of E over components of a suitable Nehari type set. These components

are shown to be differentiable manifolds and natural constraints for the energy

functional. The method proposed in this work makes more clear the relation

between minimizers of E restricted to Sr and the parameters q, λ, p and r. In

particular, it sheds some light on the role of special exponents p appearing in

the Schrödinger–Poisson system: p = 8/3, p = 3, p = 10/3. Moreover, it relates

the strict sub-additive inequality with topological properties of some natural

curves that cross the Nehari manifolds as r varies.

Indeed beside recovering known results, we get also new ones and interesting

estimates.

We think that this fibering approach can be used to solve also other different

problems involving suitable constraints (different from the L2-norm).

To conclude this Section, we point out that recently the fibration method to-

gether with the notion of extremal values, that guarantees regions of parameters

in which the Nehari manifold method can be applied to prove existence of solu-

tions, has been used successfully also in other types of equations as in [11,23,24].

2. Statement of the results

In this paper we obtain five types of results, all based on the introduction

of a suitable Nehari set type for the functional E restricted to Sr and on its

properties. Before we state our results, we need to introduce some notation.
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First of all, by using standard methods, it is easy to see (see Proposition 4.2)

that every critical point of E restricted to Sr belongs to the Nehari type set

Nr := Nr,q,λ =

{
u ∈ Sr :

∫
|∇u|2 + q

4

∫
φuu

2 − 3(p− 2)

2p
λ

∫
|u|p = 0

}
.

Indeed this set has been already introduced in [1, 12]. However, by means of

the fibering method, we are able to decompose Nr into the subsets

N+
r =

{
u ∈ Nr :

∫
|∇u|2 − 3(p− 2)(3p− 8)

4p
λ

∫
|u|p > 0

}
,

N 0
r =

{
u ∈ Nr :

∫
|∇u|2 − 3(p− 2)(3p− 8)

4p
λ

∫
|u|p = 0

}
,

N−
r =

{
u ∈ Nr :

∫
|∇u|2 − 3(p− 2)(3p− 8)

4p
λ

∫
|u|p < 0

}
,

so that Nr = N+
r ∪N 0

r ∪N−
r and even more, we show that whenever nonempty,

N+
r and N−

r are differentiable manifolds of codimension 2 in H1(R3) and a

natural constraint for the functional E restricted to Sr (see Theorem 4.9).

One of the main ingredients in our proofs will be the analysis of the functional

Rp(u) =
(
∫ |∇u|2) 3p−8

4(p−3) (q
∫
φuu

2)
10−3p
4(p−3)

(λ
∫ |u|p) 1

2(p−3)

, u ∈ S1, p �= 3.

This functional is obtained with the help of Pohozaev’s fibration method and

is the so-called nonlinear Rayleigh quotient introduced by Il’yasov in [10]. Its

topological properties are related with existence and non-existence of solutions

for our problem and, although not in this form, this functional was already

used in [7]. See also [9] where the nonlinear Rayleigh quotient was found by

fixing r > 0 and considering q as a parameter; however, this is different from

our approach, the main goal of which is to analyse the topological properties of

the Nehari set also when r varies.

A rough summary of the results proved here is the following:

(I) we present new inequalities involving functions in H1(R3) and its New-

tonian potential;

(II) we show the structure of the Nehari set Nr and related existence/non-

existence results;

(III) we estimate the smallness of r > 0 which guarantees the existence of a

minimum stated in [3, Theorem 4.1];

(IV) we prove existence of global minimizers at a positive energy level;
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(V) we estimate the smallness of r > 0 which permits to apply the methods

used in [1] and show the existence of a solution.

Let us better detail our results.

(I) Our first results concern new inequalities we were not able to find in the

literature. They are obtained by exploring the functional Rp.

Theorem 2.1: For each p ∈ [10/3, 6) there exists a constant Cq,λ,p > 0 such

that

λ

∫
|u|p ≤ Cq,λ,p

(
∫ |∇u|2) 3p−8

2 (
∫
u2)2(p−3)

(q
∫
φuu2)

3p−10
2

, ∀u ∈ H1(R3) \ {0}.

We remark that similar inequalities are known in the literature, see Catto

et al. [7] for the case p ∈ [8/3, 10/3].

We have also the following inequality whose proof will be more involved than

the previous theorem.

Theorem 2.2: For each p ∈ (2, 3) there exists a constant Cq,λ,p > 0 such that

λ

∫
|u|p ≥ Cq,λ,p

(
∫ |∇u|2) 3p−8

2 (
∫
u2)2(p−3)

(q
∫
φuu2)

3p−10
2

, ∀u ∈ H1(R3) \ {0}.

(II) The second type of results deal with the structure of Nr and its conse-

quences. The situation will be different in the cases p �= 3 and p = 3 and related

existence/non-existence results are obtained.

The case p �= 3. For each p ∈ (2, 6) \ {3}, define the infimum of E over a

subset of the Nehari set, by

Ir := Ir,q,λ = inf{E(u) : u ∈ N+
r ∪ N 0

r }.
In particular infSr E ≤ Ir. With our approach we are able to show the following.

Theorem 2.3: The following hold:

(i) If p∈(2, 8/3), then Nr=N+
r �=∅ and −∞<Ir=infSr E<0 for all r>0.

(ii) If p ∈ (10/3, 6), then Nr = N−
r �= ∅ and Ir = −∞ for all r > 0.

(iii) If p=8/3, then Nr=N+
r �=∅ and −∞<Ir=infSr E<0 for all r>0.

(iv) If p = 10/3, then there exists a constant KGN > 0 such that Nr �= ∅ if,

and only if,
5

3KGN

1

λ
< r2/3.

In case Nr �= ∅ we have that Nr = N−
r and Ir = −∞.
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(v) If p ∈ (8/3, 3), thenN+
r ,N 0

r ,N−
r are non-empty and Ir < 0 for all r > 0.

(vi) If p ∈ (3, 10/3), then there exist 0 < r∗ < r∗0 such that

(1) N+
r ,N−

r are non-empty if, and only if, r > r∗.
(2) N 0

r �= ∅ if, and only if, r ≥ r∗.
Moreover, if r>r∗0 , then Ir=infSr E < 0 while if r∈ [r∗, r∗0 ], then Ir ≥ 0.

In the above Theorem we presented the statements in that order due to

the techniques used in the proofs, which are similar, respectively, for (i)–(ii),

(iii)–(iv) and (v)–(vi).

Theorem 2.3 (parts of it) can be found in most of the works cited until now,

in particular we would like to refer the reader to the works [7, 12], where some

calculations can be found explicitly.

Our contribution here is to show how, with a general framework, it is possible

to connect all these results with the partitioning of the Nehari set Nr in terms

of N+
r ,N 0

r ,N−
r . Moreover we give a characterisation of the quantities r∗, r∗0 in

terms of Rp, namely

r∗ =
(
4
10− 3p

3p− 8

) 3p−10
4(p−3)

( 4p

3(p− 2)(3p− 8)

) 1
2(p−3)

inf
w∈S1

Rp(w)

and

r∗0 =
(2(10− 3p)

3p− 8

) 3p−10
4(p−3)

( p

3p− 8

) 1
2(p−3)

inf
w∈S1

Rp(w)

(see (5.2)) and it will be evident that they are related to some geometrical

properties of the Nehari set (see Proposition 4.5). Note that (as already known)

for p ∈ [10/3, 6) we have Ir = −∞, which is equivalent to Nr = N−
r and also

suggests a mountain pass geometry (see Bellazini et al. [1]). Observe that

items (iv) and (vi) of Theorem 2.3 give also results of the non-existence of

critical points of E over Sr depending on r. Indeed since every critical point

of E constrained to Sr belongs to Nr, it follows that if Nr is empty, then there

is no critical point at all; therefore as an immediate consequence of Theorem 2.3

we infer

Corollary 1: The functional E constrained to Sr has no critical points if:

(i) p = 10/3 and 5
3KGN

1
λ ≥ r2/3,

(ii) p ∈ (3, 10/3) and r < r∗.
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Note that the results in Theorem 2.3 and Corollary 1 are independent of q > 0

and the unique case in which λ has a role is when p = 10/3.

The case p = 3. Here the situation changes drastically in the sense that r no

longer has a role and the properties of the Nehari sets depend on q and λ. In

order to make clear this dependence, we use the notation Nq,λ, Iq,λ, . . . instead

of the previous Nr, Ir . . ..

We prove the following:

Theorem 2.4: Let p = 3 and r > 0. For each fixed q > 0, there exist positive

constants λ∗q < λ∗0,q such that

(i) N+
q,λ,N−

q,λ are non-empty if, and only if λ > λ∗q . Moreover, if λ > λ∗q
then N 0

q,λ �= ∅.
(ii) If λ > λ∗0,q, then Iq,λ = infSr E < 0, while if λ ∈ (0, λ∗0,q), then Iq,λ ≥ 0.

Similarly to the quantities r∗0 , r
∗, the quantities λ∗0,q, λ

∗
q have a geometrical

interpretation and are given by

λ∗0,q =
(9
2

)1/2

q1/2 inf
w∈S1

(
∫ |∇w|2 ∫ φww2)1/2∫ |w|3

and

λ∗q = 2q1/2 inf
w∈S1

(
∫ |∇w|2 ∫ φww2)1/2∫ |w|3 .

We observe that, unlike Theorem 2.3 item (vi), in Theorem 2.4 we were not

able to describe the behavior of Nq,λ∗
0,q

. This is due to the fact that u ∈ Nq,λ∗
0,q

if, and only if, u is a minimizer of the quotient

(
∫ |∇w|2 ∫ φww2)1/2∫ |w|3 on S1.

The fact that the above quotient is bounded away from zero is due to Lions [17],

however, it is an open problem if this functional has a minimizer. As was pointed

out in [7], the minimizers of that functional also are (up to some constant)

global minimizers of Iq,λ∗
0,q

and Iq,λ∗
0,q

= 0. As before, we can deduce by using

Theorem 2.4 a non-existence result.

Corollary 2: Let p = 3 and r, q > 0. The functional E constrained to Sr has

no critical points if λ ∈ (0, λ∗q).
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(III) Our third type of result complements [3, Theorem 4.1]. Indeed in [3] (see

also [7]) the authors proved, among other things, that for small r, there exist

minimizers for E over Sr. With our approach we are able to give a quantitative

estimate on the “smallness” of r in terms of Rp which guarantees the existence

of minimizers.

Theorem 2.5: Let p ∈ (2, 3). Then for each

r ∈
(
0,
[1
2

(2(p− 2)

p

) 2
3p−8

] 3p−8
4(3−p)

inf
w∈S1

Rp(w)
)

there exists u ∈ Sr satisfying E(u) = minSr E.

(IV) The fourth type of result deals with the existence of a global minimizer

with positive energy when p ∈ (3, 10/3) which has never been treated in the

literature. In this case the inequality infSr E < 0 is no longer true for r ∈ [r∗, r∗0 ].
Moreover, infSr E = 0 if 0 < r ≤ r∗0 and it is not achieved.

We extend these results by showing the existence of local minimizers for E

on Sr with positive energy, when r belongs to a neighborhood of r∗0 . Unfortu-

nately we are not able to cover the whole range (3, 10/3). Our result is

Theorem 2.6: There exists p0 ∈ (3, 10/3) such that if p ∈ (p0, 10/3), then

(i) the function [r∗,∞) 
 r �→ Ir is decreasing, Ir∗0 = 0 and Ir > 0 for

r ∈ [r∗, r∗0);

(ii) for each r ∈ [r∗, r∗0) there exists u ∈ N+
r ∪ N 0

r such that Ir = E(u);

(iii) there exists ε > 0 such that if r ∈ (r∗0 − ε, r∗0), then there exists u ∈ N+
r

such that Ir = E(u).

Indeed we find explicitly the number

p0 =
73 +

√
145

27

which is new in the literature.

We believe it is an interesting problem to study the case p ∈ (3, p0].

We point out that similar results to our Theorem 2.6 have been obtained in

[13, Theorem 1.1] for a different equation involving a quasilinear term. However,

with our new approach we present a characterisation of the extremal value r∗0 ;
see (5.2).
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(V) Finally we study the smallness of r which guarantees the existence of

solutions by the methods used in [1]. With this aim let

Jr = inf{E(u) : u ∈ N−
r }.

We have

Theorem 2.7: Let p ∈ [10/3, 6). Then for each

r ∈
(
0,
(2(6− p)

5p− 12

) 3p−10
4(p−3)

( 3p

5p− 12

) 1
2(p−3)

inf
u∈S1

Rp(u)
)

there exists u ∈ N−
r such that Jr = E(u).

Organisation of the paper. The paper is organized as follows.

In Section 3 we study deeply the Rayleigh quotient Rp. Indeed most of the

results are based on its properties. We then give the proof of Theorem 2.1 and

Theorem 2.2.

In Section 4 we introduce the set Nr and give a description via the fibering

method of its subsets N+
r ,N−

r ,N 0
r on which we study the energy functional E.

In particular, we show that N+
r ,N−

r are differentiable manifolds and natural

constraints for E (see Theorem 4.9).

In Section 5 we study deeply these sets depending on the parameters q, λ, p, r.

This analysis will allow us to prove our second type of results, namely Theo-

rem 2.3 and Theorem 2.4.

In Section 6 we show the subadditivity condition for Ir that will serve as a

prerequisite for the subsequent Section.

In Section 7 we prove Theorem 2.5 and Theorem 2.6.

Section 8 is devoted to the proof of Theorem 2.7.

In Appendix A we give a new estimate concerning Ir1 and Ir2 for r1 < r2

obtained by means of the fibering approach.

Notation. As a matter of notation, throughout the paper we denote by ‖ · ‖p
the Lp-norm in R3. We use on(1) to denote a vanishing sequence. Given a

function u and t > 0, we set

ut(x) = t
3
2u(tx).

Note that ‖u‖2 = ‖ut‖2.



12 G. SICILIANO AND K. SILVA Isr. J. Math.

3. The nonlinear Rayleigh quotient Rp

Let us start with a simple and general result whose proof is straightforward, so

it is omitted.

Proposition 3.1: Suppose that b �= 0, ce − bf �= 0, (bd − ae)/(ce − bf) > 0,

(af − cd)/(ce− bf) > 0, A,B,C > 0 and p ∈ (2, 6) \ {3}. Then the system

(3.1)

⎧⎨
⎩atA+ brB + cr

p
2−1t

3p
2 −4C = 0

dtA+ erB + fr
p
2−1t

3p
2 −4C = 0

admits a unique solution r, t > 0. Moreover, explicitly we have

r =
(bd− ae

ce− bf

) 1
2(p−3)

(af − cd

ce− bf

) 3p−10
4(p−3) A

3p−8
4(p−3)B

3p−10
4(p−3)

C
1

2(p−2)

.

Recall the next two results.

Lemma 3.2 (Catto et al. [7]): For each p ∈ (2, 6) and r > 0, there exists a

sequence of functions {un} ⊂ Sr and positive constants C1, C2 and C3, satisfying∫
|un|p = C1,

∫
|∇un|2 = C2n

2
3 ,

∫
φunu

2
n ≤ C3

n
2
3

, ∀n∈ N.

Lemma 3.3 (Catto et al. [7]): Assume that p ∈ [8/3, 3], then there exists a

constant C > 0 such that

(3.2)

∫
|u|p ≤ C

(∫
u2

)2(3−p)(∫
φuu

2

) p−2
2
(∫

|∇u|2
)p−2

, ∀u∈H1(R3).

If p ∈ [3, 10/3], then there exists a constant C > 0 such that

(3.3)

∫
|u|p≤C

(∫
u2

)2(p−3)(∫
φuu

2

) 10−3p
2

(∫
|∇u|2

) 3p−8
2

, ∀u∈H1(R3).

Let us define for p ∈ (2, 6) \ {3} the quotient

(3.4) Rp(u) =
(
∫ |∇u|2) 3p−8

4(p−3) (q
∫
φuu

2)
10−3p
4(p−3)

(λ
∫ |u|p) 1

2(p−3)

, u ∈ S1.

Note that in particular

(3.5) R8/3(u) =
(λ

∫ |u|8/3)3/2
(q

∫
φuu2)3/2

and R10/3 =
(
∫ |∇u|2)3/2

(λ
∫ |u|10/3)3/2 .

The next result is just Lemma 3.2 and the inequality (3.3) of Lemma 3.3

rewritten in terms of our functional Rp.
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Proposition 3.4: The functional Rp defined above is continuous. Moreover:

(i) if p ∈ (2, 3), then the functional Rp is unbounded from above,

(ii) if p ∈ (3, 10/3], then the functional Rp is bounded away from 0.

Proof. The continuity is obvious. To prove (i), if {un} is the sequence given in

Lemma 3.2, since p < 3, it follows that Rp(un) ≥ Cn where C is some positive

constant. The proof of (ii) is a direct consequence of (3.3) of Lemma 3.3.

For future reference we consider the system

(3.6)

⎧⎨
⎩
rt2

∫ |∇u|2 + r2t
4 q

∫
φuu

2 − 3(p−2)
2p rp/2t

3(p−2)
2 λ

∫ |u|p = 0,

q
2r

2t
∫
φuu

2 − p−2
p rp/2t

3(p−2)
2 λ

∫ |u|p = 0,

where u ∈ S1 and r, t > 0. From Proposition 3.1 and recalling Rp defined

in (3.4) and (3.5), we have that if p ∈ (2, 6) \ {3}, then the system has a unique

solution (r̃(u), t̃(u)) which is given by:

• if p ∈ (2, 3) with p �= 8/3:

(3.7)

r̃(u) =
[1
2

(2(p− 2)

p

) 2
3p−8

] 3p−8
4(3−p)

Rp(u),

t̃(u) =
( p

2(p− 2)
r̃(u)

4−p
2
q

λ

∫
φuu

2∫ |u|p
) 2

3p−8

;

• if p = 8/3:

(3.8)

r̃(u) =
1

23/2
R8/3(u),

t̃(u) =
1

25/2
(λ

∫ |u|p)3/2
(q

∫
φuu2)1/2

∫ |∇u|2 .

Remark 1: Note that r̃(u) as a function of p is continuous in p = 8/3 since

lim
p→8/3

[1
2

(2(p− 2)

p

) 2
3p−8

] 3p−8
4(3−p)

=
1

23/2
.

We recall the following Hardy–Littlewood–Sobolev inequality (see [14, Theo-

rem 4.3]):

Theorem 3.5: Assume that 1 < a, b <∞ satisfy

1

a
+

1

b
=

5

3
.
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Then there exists a constant Ha,b > 0 such that∣∣∣∣
∫ ∫

R3×R3

f(x)g(y)

|x− y| dxdy
∣∣∣∣ ≤ Ha,b‖f‖a‖g‖b, ∀f ∈ La(R3), g ∈ Lb(R3).

Then we can prove the following result.

Proposition 3.6: For each p ∈ [10/3, 6), there exists a constant Cq,λ,p > 0

such that

Rp(u) ≥ Cq,λ,p, ∀u ∈ S1.

Proof. We have by definition

Rp(u) =
(
∫ |∇u|2) 3p−8

4(p−3)

(λ
∫ |u|p) 1

2(p−3) (q
∫
φuu2)

3p−10
4(p−3)

, u ∈ S1.

We can assume that ‖∇u‖2=1 and hence the conclusion is a simple consequence

of Sobolev embeddings and the Hardy–Littlewood–Sobolev inequality.

More involved is the proof of the next result.

Proposition 3.7: For each p ∈ (2, 3), there exists a constant Cq,λ,p > 0 such

that

Rp(w) ≥ Cq,λ,p, ∀w ∈ S1.

Proof. First note that

Rp(w
t) = Rp(w) and

∫
|∇wt|2 = t2

∫
|∇w|2 ∀w ∈ S1, t > 0.

From this it follows that

(3.9) inf
w∈S1

Rp(w) = inf

{
Rp(w) : w ∈ S1,

∫
|∇w|2 = 1

}
.

Indeed, for any ε > 0 there exists u ∈ S1 such that Rp(u) ≤ infS1 Rp+ ε. Then,

if we consider ut∗ , where t∗
∫ |∇u|2 = 1, we have that

ut∗ ∈ S1 and

∫
|∇ut∗ |2 = 1.

Consequently

inf

{
Rp(w) : w ∈ S1,

∫
|∇w|2 = 1

}
≤ Rp(u

t∗) = Rp(u) ≤ inf
S1

Rp + ε

and (3.9) follows. The approach to prove the theorem will be different according

to the values of p.
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Case 1: p ∈ (8/3, 3).

Assume on the contrary that there exists a sequence {wn} ⊂ S1 such that

Rp(wn) → 0 as n→ +∞.

Let r̃(wn) and t̃(wn) be the solutions of system (3.6), see (3.7), and set for

brevity rn = r̃(wn) and un = r
1/2
n w

˜t(wn)
n . It is easy to see that, for all n ∈ N,

(3.10)

⎧⎨
⎩
∫ |∇un|2 + q

4

∫
φunu

2
n − 3(p−2)

2p λ
∫ |un|p = 0,

q
2

∫
φunu

2
n − p−2

p λ
∫ |un|p = 0.

Now observe that (3.10) is the same as [3, equation (4.9)] and therefore

E(un) =
3− p

2− p

∫
|∇un|2 < 0, ∀n ∈ N,

which implies that Irn ≤ E(un) < 0 and hence, since Irn → 0 as n → +∞, we

obtain that E(un) → 0 as n → ∞. The last convergence implies [3, formula

(4.10)]. Therefore, by following the proof of [3, Theorem 4.1., step 5, case (e)],

we reach a contradiction and henceRp is bounded from below over the sphere S1.

To treat the other cases of p, we observe that, since p < 3, the Lemma is

proved once we show that R
2(p−3)
p is bounded above if ‖w‖2 = ‖∇w‖2 = 1.

Case 2: p ∈ (12/5, 8/3].

By choosing a = p/2 and b = 3p/(5p− 6) from Theorem 3.5 we obtain

∫
φww

2 ≤ Ha,b‖w2‖p/2‖w2‖b = Ha,b‖w‖2p‖w‖22b, ∀w ∈ H1(R3).

Since 2 < 2b < p, from the interpolation inequality we have that

‖w‖2b ≤ ‖w‖
2(3−p)
3(p−2)
p ‖w‖

p
3(p−2)

2 ,

and hence ∫
φww

2 ≤ Ha,b‖w‖
2p

3(p−2)
p ‖w‖

2p
3(p−2)

2 .
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Consequently, for a suitable constant Cp,q > 0 depending only on p and q, we get

Rp(w)
2(p−3) =

(
∫ |∇w|2) 3p−8

2 (q
∫
φww

2)
10−3p

2

λ
∫ |w|p

≤ Cq,p

λ

(
∫ |w|p) 10−3p

3(p−2)∫ |w|p

=
Cq,p

λ

(∫
|w|p

) 2(8−3p)
3(p−2)

≤ 2
Cq,p

λ
, ∀w ∈ S1,

∫
|∇w|2 = 1.

Case 3: p ∈ (2, 12/5].

We choose a = b = 6/5 in Theorem 3.5 and use the interpolation inequality

to conclude that∫
φww

2 ≤ H6/5,6/5‖w‖412/5 ≤ H6/5,6/5‖w‖
6p

6−p
p ‖w‖

2(12−5p)
6−p

6 , ∀w ∈ H1(R3).

From the Sobolev inequality we obtain that, for a suitable constant S > 0,

depending only on p, we have∫
φww

2 ≤ H6/5,6/5S‖w‖
6p

6−p
p , ∀w ∈ S1,

∫
|∇w|2 = 1.

Consequently, for a suitable constant Cp,q>0 depending only on p and q, we have

R2(p−3)
p (w) =

(
∫ |∇w|2) 3p−8

2 (q
∫
φww

2)
10−3p

2

λ
∫ |w|p

≤ Cq,p

λ

(
∫ |w|p) 3(10−3p)

6−p∫ |w|p

=
Cq,p

λ

(∫
|w|p

) 8(3−p)
6−p

≤ 2
Cq,p

λ
, ∀w ∈ S1,

∫
|∇w|2 = 1,

and hence the proof is concluded.

As a consequence of the previous proposition, we have the new inequalities

stated in Theorem 2.1 and Theorem 2.2.

3.1. Proof of Theorem 2.1 and Theorem 2.2. They follows respectively

by Proposition 3.6 and Proposition 3.7 with a simple L2-normalization.
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4. Natural constraints for E

In this Section we prove the existence of a natural constraint for the energy

functional E restricted to Sr. Although such a constraint appeared already

in [1, 12], the proof that it is a manifold and a natural constraint seems to

be new.

We start with a well-known Pohozaev identity, which will be quite useful:

for a, b, c, d ∈ R consider the equation

(4.1)

⎧⎨
⎩−aΔu+ bu+ cφuu+ d|u|p−2u = 0,

u ∈ H1(R3),

and define P : H1(R3) → R by

P (u) =
a

2

∫
|∇u|2 + 3b

2

∫
u2 +

5c

4

∫
φuu

2 +
3d

p

∫
|u|p.

Then we have the following Pohozaev identity; see [21, Theorem 2.2]:

Proposition 4.1: If u satisfies (4.1), then P (u) = 0.

As a consequence we get the next result which is already known (see [12,

Lemma 2.1]), however, we prove it for completeness.

Proposition 4.2: Assume that u ∈ Sr is a critical point of E restricted to Sr.

Then ∫
|∇u|2 + q

4

∫
φuu

2 − 3(p− 2)

2p
λ

∫
|u|p = 0.

Proof. Indeed, from the Lagrange multiplier rule there exists μ ∈ R such that

E′(u) = μu, that is, u is a solution of

−Δu+ qφuu− λ|u|p−2u = μu.

In particular, u satisfies∫
|∇u|2 + q

∫
φuu

2 − λ

∫
|u|p = μ

∫
u2

and by Proposition 4.1 also

1

2

∫
|∇u|2 − 3

2
μ

∫
u2 +

5

4
q

∫
φuu

2 − 3λ

p

∫
|u|p = 0

which together give the desired equality.
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Proposition 4.2 justifies the introduction of the set

(4.2) Nr,q,λ :=

{
u ∈ Sr :

∫
|∇u|2 + q

4

∫
φuu

2 − 3(p− 2)

2p
λ

∫
|u|p = 0

}
,

since it contains any solution u of (1.2). In the following we will simply writeNr.

Define also

N+
r =

{
u ∈ Nr :

∫
|∇u|2 − 3(p− 2)(3p− 8)

4p
λ

∫
|u|p > 0

}
,(4.3)

N 0
r =

{
u ∈ Nr :

∫
|∇u|2 − 3(p− 2)(3p− 8)

4p
λ

∫
|u|p = 0

}
,(4.4)

N−
r =

{
u ∈ Nr :

∫
|∇u|2 − 3(p− 2)(3p− 8)

4p
λ

∫
|u|p < 0

}
.(4.5)

Just in Subsection 5.2 it will be more convenient to express explicitly the de-

pendence on q and λ, instead of r, since they will have an important role.

To obtain basic estimates for the elements of Nr let us recall the Gagliardo–

Nirenberg inequality:

(4.6)

∫
|u|p ≤ KGN

(∫
|∇u|2

) 3(p−2)
4

(∫
u2

) 6−p
4

, ∀u ∈ H1(R3),

where KGN > 0, hereafter, is the Gagliardo–Nirenberg constant which depends

only on p. Then we have

Proposition 4.3: Let r, λ > 0 and u ∈ Nr.

(1) For p ∈ (2, 10/3), we have∫
|∇u|2 ≤ K

4
(10−3p)

GN

(3(p− 2)λ

2p

) 4
10−3p

r
6−p

10−3p .

(2) For p = 10/3, we have

5

3λKGN
≤ r2/3.

(3) If p ∈ (3, 10/3), then there exist constants cp, c
′
p > 0 such that∫

|∇u|2 ≥ cp
r

and

∫
|u|p ≥ c′p

λr
.

(4) For p ∈ (10/3, 6), we have∫
|∇u|2 ≥ K

4
(10−3p)

GN

(3(p− 2)λ

2p

) 4
10−3p

r
6−p

10−3p .
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Proof. First observe that for any u ∈ Nr we have

(4.7)

∫
|∇u|2 ≤ 3(p− 2)

2p
λ

∫
|u|p.

Combining (4.7) with the Gagliardo–Nirenberg inequality (4.6) we infer, for

any u ∈ Nr, that

∫
|∇u|2 ≤ KGN

3(p− 2)λ

2p

(∫
|∇u|2

) 3(p−2)
4

r
6−p
4 .

From this we deduce (1), (2) and (4).

Now assume that p ∈ (3, 10/3). From [12, Lemma 2.3], there exist c, cp > 0

positive constants, such that

∫
|∇u|2+ q

4

∫
φuu

2−3(p− 2)

2p
λ

∫
|u|p≥c

∫
|∇u|2−cp

(∫
|∇u|2

) 3
2

r
1
2 , ∀u∈Sr.

Therefore

c

∫
|∇u|2 − cp

(∫
|∇u|2

) 3
2

r
1
2 ≤ 0, ∀u ∈ Nr,

and hence

(4.8)

∫
|∇u|2 ≥

(
c

cp

)2
1

r
, ∀u ∈ Nr

which is the first estimate in (3). The second one follows by (4.7) and (4.8).

For the sake of completeness we observe, by looking at the proof of [12,

Lemma 2.2 and Lemma 2.3], that the constants appearing in (3) of Proposi-

tion 4.3 are given explicitly by

(4.9)

cp =
p− 3

4− p
KGN

(3(p− 2)(4− p)27−p

p

)1/(p−3)

, c′p =
2p

3(p− 2)

( c

cp

)2

,

c =
64π − 1

64π

and do not depend on q.

As we will see, item (2) in Proposition 4.3 will be improved in Theorem 5.3.
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4.1. The fibration for Nr. We will use the fibration method of Pohozaev

to study Nr. Given u ∈ S1, define the fiber map

ϕr,q,λ,u : t ∈ (0,∞) �−→ E(r1/2ut) ∈ R

where ut(x) = t
3
2 u(tx) ∈ S1 and then r1/2ut ∈ Sr. Also in this case, until

Subsection 5.2 we will write simply ϕr,u. Then explicitly we have

ϕr,u(t) =
t2

2
r

∫
|∇u|2 + t

4
r2q

∫
φuu

2 − t3/2p−3

p
rp/2λ

∫
|u|p.

A simple computation gives the next

Lemma 4.4: The fiber map ϕr,u is a smooth function and

ϕ′
r,u(t) = tr

∫
|∇u|2 + r2

4
q

∫
φuu

2 − 3(p− 2)

2p
t
3p
2 −4rp/2λ

∫
|u|p,

ϕ′′
r,u(t) = r

∫
|∇u|2 − 3(p− 2)(3p− 8)

4p
t
3p
2 −5rp/2λ

∫
|u|p.

Then we can give a complete description of the fiber ϕr,u.

Proposition 4.5: For each u ∈ S1 the following statements hold:

(I) If p ∈ (2, 8/3), then ϕr,u has only one critical point at t+r (u) which is a

global minimum with ϕ′′
r,u(t

+
r (u)) > 0.

(II) If p = 8/3, we have:

(1) if

r2

4

∫
φuu

2 − rp/2

p
λ

∫
|u|p < 0,

then ϕr,u has only one critical point at t+r (u) which is a global

minimum with ϕ′′
r,u(t

+
r (u)) > 0;

(2) if

r2

4

∫
φuu

2 − rp/2

p
λ

∫
|u|p ≥ 0,

then ϕr,u is strictly increasing and has no critical points.

(III) If p ∈ (8/3, 10/3), then there are three possibilities:

(1) ϕr,u has exactly two critical points at t−r (u) < t+r (u). Moreover,

t+r (u) corresponds to a local minimum while t−r (u) corresponds to
a local maximum with ϕ′′

r,u(t
+
r (u)) > 0 and ϕ′′

r,u(t
−
r (u)) < 0;

(2) ϕr,u is strictly increasing and has exactly one critical point at t0r(u).

Moreover, t0r(u) corresponds to an inflection point;
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(3) ϕr,u is strictly increasing and has no critical points.

(IV) If p = 10/3, we have:

(1) if

r

2

∫
|∇u|2 − rp/2

p
λ

∫
|u|p < 0,

then ϕr,u has only one critical point at t−r (u) which is a global

maximum with ϕ′′
r,u(t

−
r (u)) < 0;

(2) if

r

2

∫
|∇u|2 − rp/2

p
λ

∫
|u|p ≥ 0,

then ϕr,u is strictly increasing and has no critical points.

(V) If p ∈ (10/3, 6), then ϕr,u has only one critical point at t−r (u) which is

a global maximum with ϕ′′
r,u(t

−
r (u)) < 0.

Proof. It is straightforward.

A direct application of the Implicit Function Theorem shows that

Lemma 4.6: Fix u∈S1 and suppose that (a, b)
r �→t+r (u) (respectively t
−
r (u))

is well defined. Then (a, b) 
 r �→ t+r (u) (respectively t
−
r (u)) is C

1 in (a, b).

From Lemma 4.4 it is easy to see that, for each r > 0, Nr given in (4.2) can

be written also as

Nr = {r1/2u : u ∈ S1, ϕ
′
r,u(1) = 0}

which, in some sense, justifies the name of Nehari set. Moreover, it holds

(see (4.3), (4.4) and (4.5)) that

(4.10)

N+
r = {u ∈ Nr : ϕ′′

r,u(1) > 0},
N 0

r = {u ∈ Nr : ϕ′′
r,u(1) = 0},

N−
r = {u ∈ Nr : ϕ′′

r,u(1) < 0},
and Nr = N+

r ∪ N 0
r ∪ N−

r .

Remark 2: Note that, given u ∈ S1, t
∗ is a critical point of the fiber map ϕr,u if

and only if r1/2ut
∗ ∈ Nr. Actually t

∗ is a minimum (respectively maximum or

inflection) point of ϕr,u if and only if r1/2ut
∗ ∈ N+

r (respectively N−
r or N 0

r ).

In the following we study deeply the sets N+
r and N−

r .
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4.2. N+
r and N−

r as natural constraints. Let us start by defining, for r>0,

the functionals

(4.11)
h(u) =

1

2

∫
u2 − r

2
, for u ∈ H1(R3),

g(u) = ϕ′
r,u(1), for u ∈ S1.

Lemma 4.7: Whenever nonempty, N+
r and N−

r are C1 manifolds in H1(R3) of

co-dimension 2.

Proof. Let us show the proof for N+
r since for N−

r it is completely analogous.

The proof will follow once we prove that h′(u) �= 0, g′(u) �= 0 and h′(u), g′(u)
are linearly independent for each u ∈ N+

r . In fact, h′(u) �= 0 is straightforward.

Suppose on the contrary that there exists u ∈ N+
r and c ∈ R such that

g′(u) = ch′(u).

It follows that

−2Δu− cu+ qφuu− 3(p− 2)

2
λ|u|p−2u = 0.

From Propostion 4.1 we conclude that⎧⎪⎪⎨
⎪⎪⎩
∫ |∇u|2 − 3c

2 r +
5
4q

∫
φuu

2 − 9(p−2)
2p λ

∫ |u|p = 0,

2
∫ |∇u|2 − cr + q

∫
φuu

2 − 3(p−2)
2 λ

∫ |u|p = 0,∫ |∇u|2 + q
4

∫
φuu

2 − 3(p−2)
2p λ

∫ |u|p = 0.

Let us set for brevity

A =

∫
|∇u|2, B = q

∫
φuu

2, C = λ

∫
|u|p

and solve the system with respect to these variables. A simple calculation shows

that it has a unique solution when p �= 3, in which case

A =
rc(8 − 3p)

8(p− 3)
, B =

rc(3p− 10)

2(p− 3)
, C =

rcp

6(p− 2)(p− 3)
.

We substitute A,C in ϕ′′
r,u(1) to conclude that

ϕ′′
r,u(1) = 0,

and hence a contradiction. If p = 3 we have two cases: when c �= 0, then the

system has no solution, which is a contradiction. When c = 0, the system has
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the following solution

A =
C

4
, B = C, C > 0.

We substitute A,C in ϕ′′
r,u(1) to conclude that

ϕ′′
r,u(1) = 0,

again a contradiction. From all these contradictions we conclude that h′(u)
and g′(u) are linearly independent for each u ∈ N+

r . Moreover, a careful look at

the previous calculations shows that g′(u) = 0 is impossible, since in that case we

would have c = 0, which gives a contradiction in all cases. Therefore g′(u) �= 0

and N+
r is a C1 manifold with co-dimension 2 in H1(R3).

Now we prove that N+
r and N−

r are natural constraints for the energy func-

tional E.

Lemma 4.8: Assume that there exist u ∈ N+
r ∪ N−

r and μ, ν ∈ R such that

E′(u) = μh′(u) + νg′(u)

where h and g are given by (4.11). Then ν = 0.

Proof. Indeed, applying Proposition 4.1 to the equation

E′(u)− μh′(u)− νg′(u) = 0

we conclude that

3

2
(E′(u)u− μh′(u)u− νg′(u)u)− P (u) = 0.

Simple calculations shows that

3

2
(E′(u)u− μh′(u)u− νg′(u)u)− P (u) = g(u)− νϕ′′

r,u(1),

which implies that νϕ′′
r,u(1) = 0, and hence ν = 0.

Lemma 4.7 and Lemma 4.8 are summarized in the next

Theorem 4.9: Whenever nonempty, N+
r and N−

r are C1 manifolds in H1(R3)

of co-dimension 2 and natural constraints for E.

The next step is then to see for which values of q, λ, p, r the sets Nr,N+
r ,N−

r

are non-empty. As a consequence of this study, we will be able to recover some

results known in the literature by our unified approach.
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5. Structure of Nr,N+
r and N−

r

The structure of Nr,N+
r and N−

r strongly depends on the values of p and

indeed different approaches are needed. The particular value p = 3 is treated

separately.

5.1. The case p �= 3 and Proof of Theorem 2.3. It is convenient to con-

sider the cases p ∈ (2, 8/3] ∪ [10/3, 6] and p ∈ (8/3, 10/3) \ {3}.

5.1.1. The case p ∈ (2, 8/3]∪[10/3, 6). In this case we can give a simple descrip-

tion of Nr. We prefer to state separately the limit cases p = 8/3 and p = 10/3.

Theorem 5.1: Let r > 0. Then:

(i) if p ∈ (2, 8/3), then Nr = N+
r �= ∅;

(ii) if p ∈ (10/3, 6), then Nr = N−
r �= ∅.

Proof. The proof of (i) is a direct consequence of Proposition 4.5 item (I) since

for each u ∈ S1 we have that r1/2ut
+
r (u) ∈ N+

r . Similarly, the proof of (ii) is a

direct consequence of Proposition 4.5 item (V), since for each u ∈ S1 we have

that r1/2ut
−
r (u) ∈ N−

r .

Theorem 5.2: Let r > 0. If p = 8/3, then Nr = N+
r �= ∅.

Proof. In fact, from Proposition 4.5 item (II) it is sufficient to prove that there

exists u ∈ S1 such that

r2

4

∫
φuu

2 − rp/2

p

∫
|u|p < 0.

If {un} ⊂ S1 is the sequence given by Lemma 3.2, then

lim
n→∞

(
r2

4

∫
qφunu

2
n−

rp/2

p
λ

∫
|un|p

)
≤ lim

n→∞

( C3

n2/3

r2

4
q−C1

rp/2

p
λ
)
= −C1

rp/2

p
λ.

Therefore for n sufficiently large, we have that r1/2u
t+r (un)
n ∈ N+

r .

Theorem 5.3: Let r > 0. If p = 10/3, then Nr �= ∅ if and only if

5

3KGN

1

λ
< r2/3

(as usual KGN is the Gagliardo–Nirenberg constant as in (4.6)). Moreover, in

this case we have Nr = N−
r .
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Proof. By Proposition 4.5 item (IV) it is sufficient to estimate, for u ∈ S1, the

quantity
r

2

∫
|∇u|2 − rp/2

p

∫
|u|p.

By the Gagliardo–Nirenberg inequality (4.6) we have that∫
|u|p ≤ KGN

∫
|∇u|2, ∀u ∈ S1,

where

KGN = sup
u∈S1

∫ |u|p∫ |∇u|2
It follows that

r

2

∫
|∇u|2 − rp/2

p
λ

∫
|u|p ≥ r

2

∫
|∇u|2 −KGN

rp/2

p
λ

∫
|∇u|2

= r

∫
|∇u|2

(1
2
− 3KGN

10
r2/3λ

)
.

By definition of KGN, there exists u ∈ S1 with

r

2

∫
|∇u|2 − rp/2

p
λ

∫
|u|p < 0

if, and only if,
5

3KGN

1

λ
< r2/3,

in which case r1/2ut
−
r (u) ∈ N−

r .

5.1.2. The case p ∈ (8/3, 10/3) \ {3}. In this case the description of Nr is more

involved. We use the ideas introduced by Il’yasov [10]: for r > 0 and u ∈ S1,

consider the system (recall the definitions in Subsection 4.1)

ϕr,u(s) = ϕ′
r,u(s) = 0.

Since p ∈ (8/3, 10/3) \ {3} we can solve it with respect to the variables s and r

to obtain a unique solution, denoted hereafter by (s0(u), r0(u)), given by

s0(u) =
( p

3p− 8

1

r(p−2)/2

∫ |∇u|2
λ
∫ |u|p

) 2
3p−10

and

r0(u) =
(2(10− 3p)

3p− 8

) 3p−10
4(p−3)

( p

3p− 8

) 1
2(p−3)

Rp(u),

where Rp is defined in Section 3. The following proposition is just a consequence

of the definitions and makes clear that p = 3 is a threshold.
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Proposition 5.4: Assume that p ∈ (8/3, 10/3) \ {3}.Then for each u ∈ S1,

there exists a unique pair (s0(u), r0(u)) such that

ϕr0(u),u(s0(u)) = ϕ′
r0(u),u

(s0(u)) = 0.

Moreover:

(1) If p ∈ (8/3, 3) and r < r0(u), then ϕr,u(s0(u)) < 0 and ϕ′
r,u(s0(u)) = 0,

while if r > r0(u), then ϕr,u(s0(u)) > 0 and ϕ′
r,u(s0(u)) = 0.

(2) If p ∈ (3, 10/3) and r < r0(u), then ϕr,u(s0(u)) > 0 and ϕ′
r,u(s0(u)) = 0,

while if r > r0(u), then ϕr,u(s0(u)) < 0 and ϕ′
r,u(s0(u)) = 0.

Similarly, for r > 0 and u ∈ S1 we consider the system

ϕ′
r,u(s) = ϕ′′

r,u(s) = 0.

Again, since p �= 3 (and p �= 10/3), we can solve it with respect to the variables s

and r to obtain a unique solution, hereafter denoted by (s(u), r(u)), given by

s(u) =
( 4p

3(p− 2)(3p− 8)

1

r(p−2)/2

∫ |∇u|2
λ
∫ |u|p

) 2
3p−10

and

r(u) =
(
4
10− 3p

3p− 8

) 3p−10
4(p−3)

( 4p

3(p− 2)(3p− 8)

) 1
2(p−3)

Rp(u).

However note that the expression for r(u) makes sense also for p = 10/3 and

in this case

(5.1) r(u) =
(5
3

)3/2

R10/3(u).

Similarly to Proposition 5.4 we have:

Proposition 5.5: Assume that p ∈ (8/3, 10/3) \ {3}. Then for each u ∈ S1,

there exists a unique pair (s(u), r(u)) such that

ϕ′
r(u),u(s(u)) = ϕ′′

r(u),u(s(u)) = 0.

Moreover:

(1) If p ∈ (8/3, 3) and r < r(u), then ϕ′
r,u(s(u)) < 0 and ϕ′′

r,u(s(u)) = 0,

while if r > r(u), then ϕ′
r,u(s(u)) > 0 and ϕ′′

r,u(s(u)) = 0.

(2) If p ∈ (3, 10/3) and r < r(u), then ϕ′
r,u(s(u)) > 0 and ϕ′′

r,u(s(u)) = 0,

while if r > r(u), then ϕ′
r,u(s(u)) < 0 and ϕ′′

r,u(s(u)) = 0.

Furthermore
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Proposition 5.6: For each u ∈ S1 we have that:

(i) if p ∈ (8/3, 3), then r0(u) < r(u);

(ii) if p ∈ (3, 10/3), then r0(u) > r(u).

Moreover:

(iii) if p ∈ (8/3, 3), then the functions S1 
 u �→ r0(u), r(u) are unbounded

from above;

(iv) if p ∈ (3, 10/3), then the functions S1 
 u �→ r0(u), r(u) are bounded

away from zero.

Proof. The proofs of (i) and (ii) are straightforward and the proofs of (iii)

and (iv) are a consequence of Proposition 3.4.

To treat the case p ∈ (3, 10/3) we need also the numbers

(5.2) r∗0 := inf
u∈S1

r0(u) and r∗ := inf
u∈S1

r(u).

Then the description of Nr,N+
r ,N−

r is given.

Theorem 5.7: The following hold:

(i) Suppose that p ∈ (8/3, 3). Then for each r > 0 there exists u ∈ S1 such

that inft>0 ϕr,u(t) < 0. Moreover, N+
r and N−

r are non-empty.

(ii) Suppose that p ∈ (3, 10/3). If r < r∗, then Nr = ∅, while if r > r∗, then
N+

r and N−
r are non-empty. Moreover, if r < r∗0 , then inft>0 ϕr,u(t) ≥ 0

for each u ∈ S1, while if r > r∗0 , then there exists u ∈ S1 such that

inft>0 ϕr,u(t) < 0.

Proof. (i) Fix r > 0 and assume on the contrary that for each u ∈ S1 we

have that inft>0 ϕr,u(t) ≥ 0. In particular, it follows that ϕr,u(t
+
r (u)) ≥ 0

and therefore, from Proposition 5.4 we conclude that r0(u) ≤ r for all u ∈ S1.

This contradicts Proposition 5.6 (iii) and hence there exists u ∈ S1 such that

inft>0 ϕr,u(t) < 0. To conclude, note from Proposition 4.5 item (III) that

if u ∈ S1 satisfies inft>0 ϕr,u(t) < 0, then r1/2ut
−
r (u) ∈ N−

r and r1/2ut
+
r (u) ∈ N+

r .

(ii) Fix r < r∗ and suppose on the contrary that Nr �= ∅. Take u ∈ Nr and ob-

serve from Proposition 4.5 item (III) that there exists t > 0 such that ϕ′
r,u(t̄) ≤ 0

and ϕ′′
r,u(t̄) = 0. From Proposition 5.5 we conclude that r ≥ r(u) ≥ r∗ which is

clearly a contradiction and therefore Nr = ∅.
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Now fix r > r∗ and assume on the contrary that N+
r = ∅, which implies from

Proposition 4.5 item (III) that N−
r = ∅ (and vice-versa). From the same propo-

sition, we conclude that for each u ∈ S1, when ϕ
′′
r,u(t) = 0 then ϕ′

r,u(t) ≥ 0. It

follows from Proposition 5.5 that r < r(u) for all u ∈ S1, again a contradiction

and hence N+
r and N−

r are non-empty.

By using the functional S1 
 u �→ r0(u) instead of S1 
 u �→ r(u), the rest of

the proof is similar.

Now we can give the proof of Theorem 2.3.

Indeed (i) follows by Theorem 5.1 and Proposition 4.5 item (I). (ii) follows

by Theorem 5.1 and Proposition 4.5 item (V). (iii) follows by Theorem 5.2.

(iv) follows by Theorem 5.3. (v) and (vi) follow by Theorem 5.7.

5.2. The case p = 3 and Proof of Theorem 2.4. In this case the system

ϕr,u(t) = ϕ′
r,u(t) = 0

has no solution with respect to the variables t, r. Therefore, instead of the

variable r, we will solve the system with respect to the variable λ and analyze

the dependence of the solutions with respect to q. It will be clear from the

calculations that, at least topologically speaking, there are no changes in the

fibering maps with respect to r, hence, to reflect the dependence on q, λ, we

change the notation here, so for example we will write Nq,λ, ϕq,λ,u, . . . instead

of Nr, ϕr,u, . . . we used up to now.

Consider then the system of equations ϕq,λ,u(t) = ϕ′
q,λ,u(t) = 0. We solve

this system with respect to the variables t, λ to find a unique solution given by

t0,q(u) =
( 3

r1/2

∫ |∇u|2
λ
∫ |u|3

)−2

and

λ0,q(u) =
(9
2

) 1
2

q
1
2
(
∫ |∇u|2 ∫ φuu2) 1

2∫ |u|3 .

Similarly, we consider the system ϕ′
q,λ,u(t) = ϕ′′

q,λ,u(t) = 0 and solve it with

respect to the variables t and λ to obtain a unique solution given by

tq(u) =
( 4

r1/2

∫ |∇u|2
λ
∫ |u|3

)−2

and

λq(u) = 2q
1
2
(
∫ |∇u|2 ∫ φuu2) 1

2∫ |u|3 .
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As an application of Lemma 3.3 we have:

Proposition 5.8: For each r, q > 0, the functionals S1 
 u �→ λ0,q(u), λq(u)

are bounded away from zero. Moreover, λq(u) < λ0,q(u) for all u ∈ S1.

For each r, q > 0 define

λ∗0,q := inf
u∈S1

λ0,q(u) and λ∗q := inf
u∈S1

λq(u).

Then the proof of Theorem 2.4 can be finished. Indeed it is similar to the

proof of Theorem 5.7 (we use Proposition 5.8 instead of Proposition 5.6).

6. On the sub-additive property for p ∈ (2, 10/3)

For each p ∈ (2, 10/3) define

Ir := Ir,q,λ = inf{E(u) : u ∈ N+
r ∪ N 0

r }.
Since E is bounded from below on Sr (see, e.g., [2, Lemma 3.1]) and Nr ⊂ Sr,

we conclude from Theorem 2.3 that Ir is well defined, that is Ir > −∞.

In this Section we show how our method can be used to prove the sub-additive

condition for Ir, namely

(6.1) Ir < Is + Ir−s, 0 < s < r.

Again it is convenient to study separately the case p = 3.

6.1. The case p ∈ (2, 10/3) \ {3}. We recall that, given u ∈ S1, by defini-

tion (r̃(u), t̃(u)) is the unique solution of⎧⎨
⎩rt

2
∫ |∇u|2 + r2t

4 q
∫
φuu

2 − 3(p−2)
2p rp/2t

3(p−2)
2 λ

∫ |u|p = 0,
q
2r

2t
∫
φuu

2 − p−2
p rp/2t

3(p−2)
2 λ

∫ |u|p = 0;

see (3.7) and (3.8) for the explicit value of the solutions.

Proposition 6.1: For each p ∈ (2, 10/3) \ {3}, the functional S1 
 u �→ r̃(u)

is bounded away from 0. Moreover,

(i) if p ∈ (3, 10/3), then r(u) < r̃(u) < r0(u), for all u ∈ S1;

(ii) if p ∈ (8/3, 3), then r̃(u) < r0(u) < r(u), for all u ∈ S1.

Proof. That S1 
 u �→ r̃(u) is bounded away from 0, for all p ∈ (2, 10/3) \ {3},
follows from Proposition 3.4 and Theorem 3.7. The proofs of (i) and (ii) are

straightforward.
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As was already observed (see, e.g., [3]), in order to prove the strict sub-

additive condition (6.1), it is sufficient to show that Ir/r is decreasing in r.

Our strategy to prove that Ir/r is decreasing in r will be the following: we will

construct paths that cross the Nehari manifolds when r varies and show that the

energy restricted to these paths, divided by r, is decreasing. Then we will show

that the function Ir/r will inherit this property for some specific values of r.

Fix u ∈ S1 and

(i) if p ∈ (2, 8/3), define f(r) := ϕr,u(t
+
r (u)) for all r ∈ (0,∞);

(ii) if p = 8/3 and r2

4

∫
φuu

2− 3
8r

4/3λ
∫ |u|8/3 < 0, define f(r) := ϕr,u(t

+
r (u))

for all r ∈ (0, r(u)) where, in this case, r(u) is by definition the

unique r > 0 for which

r2

4

∫
φuu

2 − 3

8
r4/3λ

∫
|u|8/3 = 0;

(iii) if p ∈ (8/3, 3), define f(r) := ϕr,u(t
+
r (u)) for all r ∈ (0, r(u));

(iv) if p ∈ (3, 10/3), define f(r) = ϕr,u(t
+
r (u)) for all r ∈ (r(u),∞).

Define also

g(r) :=
f(r)

r
.

Clearly f , and consequently g, depend on u ∈ S1.

Proposition 6.2: Let u ∈ S1.

(i) If p ∈ (2, 8/3), then the function (0,∞) 
 r �→ g(r) is decreasing for

all r ∈ (0, r̃(u)) and increasing for all r ∈ (r̃(u), r(u)).

(ii) If p = 8/3, then the function (0,∞) 
 r �→ g(r) is decreasing for

all r ∈ (0, r̃(u)) and increasing for r ∈ (r̃(u), r(u)).

(iii) If p ∈ (8/3, 3), then the function (0, r(u)) 
 r �→ g(r) is decreasing for

all r ∈ (0, r̃(u)).

(iv) If p ∈ (3, 10/3), then the function (r(u),∞) 
 r �→ g(r) is decreasing

for all r ∈ (r̃(u),∞).

Proof. Indeed, from the definition of f(r), it follows from Lemma 4.6 that g

is C1 and

g′(r) = rϕ′
r,u(t

+
r (u)) +

q

2
t+r (u)

∫
φuu

2 − p− 2

p
rp/2−2t+r (u)

3p
2 −3λ

∫
|u|p.
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For simplicity denote tr = t+r (u). It follows that g
′(r) = 0 if, and only if,

(6.2)

⎧⎨
⎩rtr

∫ |∇u|2 + r2

4 q
∫
φuu

2 − 3(p−2)
2p rp/2t

3p
2 −4
r λ

∫ |u|p = 0,

q
2 tr

∫
φuu

2 − p−2
p rp/2−2t

3p
2 −3
r λ

∫ |u|p = 0,

which is equivalent to system (3.6). Fix r > 0 and define

h(t) :=
q

2

∫
φuu

2 − p− 2

p
r

p
2−2t

3p
2 −4λ

∫
|u|p.

We consider two cases:

Case 1: p = 8/3.

Observe that the first equation of (3.6) has a unique solution t. By plugging

this solution in the left-hand side of the second equation, which is exactly th(t),

the proof of (ii) is complete.

Case 2: p ∈ (2, 10/3) \ {8/3, 3}.
Note that the second equation of (3.6) has a unique solution t. By plugging

this solution in the left-hand side of the first equation, which is exactly ϕ′
r,u(t),

we conclude, by using Proposition 4.5, the following:

(1) if p∈(2, 8/3) and r∈(0, r̃(u)), then ϕ′
r,u(t) > 0, while for r ∈ (r̃(u), r(u))

we have that ϕ′
r,u(t) < 0;

(2) if p ∈ (8/3, 3) and r ∈ (0, r̃(u)), then ϕ′
r,u(t) < 0;

(3) if p ∈ (3, 10/3) and r ∈ (r̃(u),∞), then ϕ′
r,u(t) < 0.

Now we can prove (i), (iii) and (iv).

(i) If r ∈ (0, r̃(u)), then from item (1), we conclude that t > tr and hence

h(tr) < h(t) = 0, while if r ∈ (r̃(u), r(u)), then t < tr and hence h(tr) > h(t)=0.

(iii) If r ∈ (0, r̃(u)), then from item (2), we conclude that t < tr and hence

h(tr) < h(t) = 0, that is g′(r) < 0.

(iv) If r ∈ (r̃(u),∞), then from item (3), we conclude that t < tr and hence

h(tr) < h(t) = 0, that is g′(r) < 0.

Let us define now

Mr =
{ u

‖u‖2 : u ∈ N+
r and E(u) < 0

}
.

Lemma 6.3: The following hold:

(i) if p ∈ (2, 3) and 0 < r1 < r2 < r∗, then Mr1 = Mr2 = S1;

(ii) if p ∈ (3, 10/3) and r∗ < r1 < r2, then Mr1 ⊂ Mr2 .
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Proof. (i) Fix 0 < r < r∗. Then, ϕr,u satisfies Item (III)-(1) of Proposition 4.5

for all u ∈ S1 and hence Mr1 = Mr2 = S1.

(ii) Indeed, if u ∈ Mr1 , then the fiber map ϕr1,u satisfies Item III − 1)

of Proposition 4.5. From Proposition 5.5 it follows that r(u) < r1 < r2

and hence ϕr2,u also satisfies Item (III)-(1) of Proposition 4.5, which implies

that Mr1 ⊂ Mr2 .

Lemma 6.4: Suppose that p ∈ (3, 10/3) and let r ∈ [a, b] where r∗0 < a < b.

Then there exists a negative constant cr such that g′(r) < cr for all u ∈ Mr

and r ∈ [a, b].

Proof. In order to prove the lemma, it is sufficient to prove that the left-hand

side of the second equation of system (6.2) is bounded from above by c for

all u ∈ Mr and r ∈ [a, b].

First observe from Proposition 6.1 that r̃(u) < r0(u) < r for all u ∈ Mr

and all r ∈ [a, b] and hence, from Theorem 6.2, we conclude that g′(r) < 0 for

all u ∈ Mr and r ∈ [a, b]. Now note that

g(r) = ϕr,u(t
+
r (u))/r = ϕr,su(t

+
r (su))/r

for all s > 0 and therefore, by choosing s = 1/‖∇u‖2, we can assume

that ‖∇u‖2 = 1 for all u ∈ Mr.

Suppose on the contrary that there exists a sequence {un} ⊂ Mr

with ‖∇un‖2 = 1 and corresponding sequences tn > 0, rn ∈ [a, b] such that

(6.3)

⎧⎨
⎩rntn

∫ |∇un|2 + r2n
4 q

∫
φunu

2
n − 3(p−2)

2p r
p/2
n t

3p
2 −4
n λ

∫ |un|p = 0,

q
2 tn

∫
φunu

2
n − p−2

p r
p/2−2
n t

3p
2 −3
n λ

∫ |un|p = on(1).

From Proposition 4.3 and the Gagliardo–Nirenberg inequality it follows that

there exist positive constants c, d such that c ≤ tn ≤ d and c ≤ ∫ |un|p ≤ d for

all n. Therefore from the second equation of (6.3) we obtain that

tn =
( p

2(p− 2)
r

4−p
2

n
q

λ

∫
φunu

2
n∫ |un|p
) 2

3p−8

+ on(1).

By plugging tn in the first equation of (6.3) we conclude that rn = r̃(un)+on(1)

and hence rn = cr0(un) + on(1) < crn + on(1) where c ∈ (0, 1), which is a

contradiction. Then there exists a negative constant cr such that g′(r) < cr for

all u ∈ Mr.
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Since we do not have a priori estimates like in Proposition 4.3 for the

case p ∈ (2, 3), a similar version of Lemma 6.4 for that case is not so imme-

diate, however, if we control the term
∫ |u|p, then we can prove the following:

Lemma 6.5: Suppose that p∈(2, 3) and let r∈[a, b] where 0<a<b< infu∈S1 r̃(u).

Fix d > 0. Then there exists a negative constant c such that g′(r) < c for

all u ∈ Mr satisfying
∫ |ut+r (u)|p ≥ c and all r ∈ [a, b].

Proof. In order to prove the lemma, it is sufficient to prove that the left hand

side of the second equation of system (6.2) is bounded from above by c for

all u ∈ Mr satisfying
∫ |ut+r (u)|p ≥ d and all r ∈ [a, b]. From Theorem 6.2, we

have that g′(r) < 0 for all u ∈ Mr. Now note that

g(r) = ϕr,u(t
+
r (u))/r = ϕr,su(t

+
r (su))/r

for all s > 0 and therefore, by choosing s = 1/‖∇u‖2, we can assume

that ‖∇u‖2 = 1 for all u ∈ Mr satisfying
∫ |ut+r (u)|p ≥ d. Suppose on the

contrary that there exists a sequence {un} ⊂ Mr satisfying ‖∇un‖2 = 1 and∫ |ut+r (un)
n |p ≥ d and corresponding sequences tn > 0, rn ∈ [a, b] such that⎧⎨

⎩rntn
∫ |∇un|2 + r2n

4 q
∫
φunu

2
n − 3(p−2)

2p r
p/2
n t

3p
2 −4
n λ

∫ |un|p = 0,

q
2 tn

∫
φunu

2
n − p−2

p r
p/2−2
n t

3p
2 −3
n λ

∫ |un|p = on(1).

Arguing as in the proof of Lemma 6.4 we conclude that

rn = r̃(un) + on(1) ≥ inf
u∈S1

r̃(u) + on(1) > b+ ε+ on(1)

for some ε, which is a contradiction. The proof is complete.

At this point we have the desired result on Ir/r.

Theorem 6.6: The following hold:

(i) if p∈(2, 3), then the function (0, infu∈S1 , r̃(u))
r �→Ir/r is decreasing;

(ii) if p ∈ (3, 10/3), then the function (r∗0 ,∞) 
 r �→ Ir/r is decreasing.

Proof. (i) Fix 0 < r1 < r2 < infu∈S1 r̃(u) < r∗ and let {un} ⊂ N+
r1 be a

minimizing sequence to Ir1 . Since every such sequence is non-vanishing, we

can assume that
∫ |un|p ≥ d for some positive constant d and all r ∈ [r1, r2].

From Lemma 6.3, Lemma 6.5 and the mean value theorem, we conclude that,
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for all n ∈ N,

Ir2
r2

≤ ϕr2,un(t
+
r2(un))

r2

=
ϕr1,un(t

+
r1(un))

r1
+ g′(θ)(r2 − r1)

<
ϕr1,un(t

+
r1(un))

r1
+ c(r2 − r1)

where θ ∈ (r1, r2). As a consequence

Ir2
r2

≤ Ir1
r1

+ c(r2 − r1),

and the proof of (i) is complete.

(ii) Fix r∗0 < r1 < r2 and note from Lemma 6.3, Lemma 6.4 and the mean

value theorem that

Ir2
r2

≤ ϕr2,u(t
+
r2(u))

r2

=
ϕr1,u(t

+
r1(u))

r1
+ g′(θ)(r2 − r1)

<
ϕr1,u(t

+
r1(un))

r1
+ c(r2 − r1), ∀u ∈ Mr1 ,

where θ ∈ (r1, r2). As a consequence

Ir2
r2

≤ Ir1
r1

+ c(r2 − r1),

and the proof of is complete.

As an immediate consequence of Theorem 6.6 we have the sub-additivity

inequality for Ir.

Theorem 6.7: The following hold:

(i) if p ∈ (2, 3), then for each r1, r2 ∈ (0, infu∈S1 r̃(u)), with r1 < r2, we

have that Ir2 < Ir1 + Ir2−r1 ;

(ii) if p ∈ (3, 10/3), then for each r1, r2 ∈ (r∗0 ,∞), with r1 < r2, we have

that Ir2 < Ir1 + Ir2−r1 .
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Remark 3: When p ∈ (2, 8/3] we see from Theorem 6.2 that after r̃(u) the

function g is increasing. This suggest that the same property may hold for Ir/r

when r is big and this suggests that Ir may not satisfy the strict sub-additive

property.

6.2. The case p = 3. We assume that λ > λ∗q , which implies from Theorem 2.4

that N+
r �= ∅ for all r > 0. We define in this case

Mr =
{ u

‖u‖2 : u ∈ N+
r

}
.

Since, as observed in Subsection 5.2, the system ϕ′
r,u(t) = ϕ′′

r,u(t) does not

depend on r > 0, it follows that

Lemma 6.8: We have that

Mr = M1, ∀r > 0.

From Lemma 6.8 we conclude that if u ∈ M1 ⊂ S1, then t
+
r (u) is defined for

all r > 0 and thus we can define f(r) = ϕr,u(t
+
r (u)).

Lemma 6.9: For each r > 0 and u ∈ M1, we have that f(r) = f(1)r3.

Proof. Note that

f(r)

r3
=

1

2

( t+r (u)
r

)2
∫

|∇u|2 + 1

4

t+r (u)

r

∫
φuu

2 − 1

3

( t+r (u)
r

) 3
2

∫
|u|3.

Since rut
+
r (u) ∈ N+

r , we also have that( t+r (u)
r

)2
∫

|∇u|2 + 1

4

t+r (u)

r

∫
φuu

2 − 1

2

( t+r (u)
r

) 3
2

∫
|u|3 = 0.

Therefore (f(r)
r3

)′
= 0, ∀r > 0,

which completes the proof.

Proposition 6.10: For each r > 0, we have that Ir = I1r
3.

Proof. For each u ∈ M1, we have from Lemma 6.9 that

ϕr,u(t
+
r (u))

r3
= ϕ1,u(t

+
1 (u)).

Therefore

Ir
r3

= inf
u∈M1

{ϕr,u(t
+
r (u))

r3

}
= inf

u∈M1

ϕ1,u(t
+
1 (u)) = I1

and the proof is completed.
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Then we have also for p = 3 the sub-additivity condition.

Theorem 6.11: Suppose that λ > λ∗0,q. Then for each 0 < r1 < r2, we have

that

Ir2 < Ir1 + Ir2−r1 .

Proof. From Theorem 2.4 we know that λ∗q < λ∗0,q and I1 < 0, therefore the

conclusion is a consequence of Proposition 6.10.

7. Constrained minimization for p ∈ (2, 10/3) \ {3}
Now we turn our attention to the existence of minimizers: it is convenient to

consider two cases according to the values of p:

• p ∈ (2, 3),

• p ∈ (3, 10/3),

although the first case is almost done.

7.1. The case p ∈ (2, 3) and Proof of Theorem 2.5. The proof follows

immediately from Theorem 6.7.

7.2. The case p ∈ (3, 10/3) and Proof of Theorem 2.6. By the definitions

(see (5.2)):

∀r > r∗0 : Ir = inf
Sr

E < 0 and Ir∗0 = inf
Sr∗0

E = 0.

In both cases the existence of minimizers is already known (see [3, 7, 12] and

also our Theorem 6.7). However as we will see 0 = infSr E < Ir if r ∈ (r∗, r∗0).
Let us start with the following

Theorem 7.1: If (r∗,+∞) 
 r �→ Ir is decreasing, then for each r ∈ (r∗, r∗0)
there exists u ∈ N+

r ∪ N 0
r such that Ir = E(u).

Proof. In fact, let {un} ⊂ N+
r ∪ N 0

r be a minimizing sequence to Ir . It follows

from Proposition 4.3 that there exist positive constants c, C such that

c ≤ ‖un‖ ≤ C, ∀n ∈ N,

and we conclude that un � 0 in Lp(R3). So {un} does not vanish and then, up

to translations, there exists a subsequence, still denoted by {un}, that converges
weakly in H1(R3), strongly in L2

loc(R
3) and almost everywhere in R3, to some

non-zero function u ∈ H1(R3).
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From [26, Lemma 2.2], we conclude that

(7.1) Ir = lim
n→∞E(un) = E(u) + lim

n→∞E(un − u).

Let, as usual,

Q(u) =

∫
|∇u|2 + q

4

∫
φuu

2 − 3(p− 2)

2p
λ

∫
|u|p = 0,

and note that

(7.2) 0 = lim
n→∞Q(un) = Q(u) + lim

n→∞Q(un − u)

and

(7.3) ‖u‖22 = r − lim
n→∞ ‖un − u‖22.

We claim that Q(u) ≤ 0. On the contrary we would have from (7.2) that

Q(un−u) < 0 for sufficiently large n. From Proposition 4.5, there exists tn > 0

such that (un − u)tn ∈ N+
‖un−u‖2

2
for large n. Once E(un − u) < Ir from (7.1)

and ‖un − u‖22 < r from (7.3) for sufficiently large n, we conclude that

I‖un−u‖2
2
< E((un − u)tn) < E(un − u) < Ir,

which contradicts the hypothesis that (r∗,∞) 
 r �→ Ir is decreasing and there-

fore Q(u) ≤ 0.

From Proposition 4.5 there exists t > 0 such that ut ∈ N+
‖u‖2

2
∪N 0

‖u‖2
2
. Thus,

since E(u) ≤ Ir from (7.1) and ‖u‖22 ≤ r from (7.3), we conclude that

I‖u‖2
2
≤ E(ut) ≤ E(u) ≤ Ir.

Therefore, from the hypothesis (r∗,∞) 
 r �→ Ir is decreasing, we conclude

that r = ‖u‖22, u ∈ N+
‖u‖2

2
∪N 0

‖u‖2
2
and E(u) = Ir .

In order to make use of Theorem 7.1, we need to show that (r∗,+∞) 
 r �→ Ir

is decreasing. Unfortunately we are able to do so only for some values of

p ∈ (3, 10/3), although we conjecture it is true for all p in the range. We note

here that in fact, when Ir < 0 this is a standard result in the literature. How-

ever, when Ir > 0, which is the case for r ∈ [r∗, r∗0 ] (see Theorem 2.3), the

inequalities go in the opposite direction and thus the proof seems not to be

direct.
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Our strategy to prove that Ir is decreasing in r will be the following: we

will construct paths that cross the Nehari manifolds when r varies and show

that the energy restricted to these paths is decreasing. To this end we need to

calculate some derivatives.

Lemma 7.2: If r1/2ut ∈ N+
r , then

t

∫
|∇u|2 + r

2
q

∫
φuu

2 − 3(p− 2)

4
t
3p
2 −4r

p
2−1λ

∫
|u|p < 0.

Proof. For simplicity denote

A =

∫
|∇u|2, B =

∫
φuu

2 and C = λ

∫
|u|p.

By assumption we have that

(7.4)

⎧⎨
⎩rtA+ r2 q

4B − 3(p−2)
2p r

p
2 t

3p
2 −4λC = 0,

rA− 3(p−2)(3p−8)
4p r

p
2 t

3p
2 −5λC > 0.

From the equality in (7.4) we conclude that

tA+
r

2
qB − 3(p− 2)

4
t
3p
2 −4r

p
2−1λC = −tA+

3(p− 2)(4− p)

4p
t
3p
2 −4r

p
2−1λC.

From the inequality of (7.4) we obtain

tA+
r

2
qB − 3(p− 2)

4
t
3p
2 −4r

p
2−1λC <

3(p− 2)(3− p)

p
t
3p
2 −4r

p
2−1λC < 0

which is the conclusion.

Corollary 3: Let I ⊂ R be an open interval and fix u ∈ S1. If t+r (u) is

defined for all r ∈ I, then the function I 
 r �→ t+r (u) is C
1.

Proof. Indeed, define

F (r, t) = ϕ′
r,u(t)

for r ∈ I and t > 0. From Lemma 7.2 it follows that F (r, t+r (u)) = 0

and ∂F
∂r (r, t

+
r (u)) < 0. The proof is then a consequence of the Implicit Function

Theorem.

Consider the equation −27x2+146x− 192 = 0. It has two real roots and the

biggest one is given by

p0 =
73 +

√
145

27
∈ (3, 10/3).
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Lemma 7.3: Assume that r1/2ut ∈ N+
r . The following hold:

(i) if p ∈ (p0, 10/3), then there exists a constant c′′p < 0 such that

t2
∫

|∇u|2 + rtq

∫
φuu

2 − λr
p
2−1t

3p
2 −3

∫
|u|p < c′′p

r2
;

(ii) if p = p0, then

t2
∫

|∇u|2 + rtq

∫
φuu

2 − λr
p0
2 −1t

3p0
2 −3

∫
|u|p0 < 0.

Proof. For simplicity denote

A =

∫
|∇u|2, B =

∫
φuu

2 and C = λ

∫
|u|p.

By assumption (see Lemma 4.4 and (4.10)) we have that

(7.5)

⎧⎨
⎩rtA+ r2 q

4B − 3(p−2)
2p r

p
2 t

3p
2 −4λC = 0,

rA− 3(p−2)(3p−8)
4p r

p
2 t

3p
2 −5λC > 0.

From the equality in (7.5) we conclude that

t2A+ rtqB − λr
p
2−1t

3p
2 −3C = −3t2A+

5p− 12

p
t
3p
2 −3r

p
2−1λC

and then, from the inequality in (7.5), we obtain

(7.6)

t2A+ rtqB−λr p
2−1t

3p
2 −3C

<
(−9(p− 2)(3p− 8)

4p
+

5p− 12

p

)
λr

p
2−1t

3p
2 −3C

=
−27p2 + 146p− 192

4p

λ

r

∫
|r1/2ut|p.

Since by assumption r1/2ut ∈ N+
r (see Remark 2), from Proposition 4.3 there

exists a constant c′p > 0 such that∫
|r1/2ut|p ≥ c′p

λr
,

therefore, from the definition of p0, coming back to (7.6), it follows that

t2
∫

|∇u|2 + rtq

∫
φuu

2 − λr
p
2−1t

3p
2 −3

∫
|u|p < −27p2 + 146p− 192

4p

c′p
r2

:=
c′′p
r2
,

from which the conclusion easily follows.

Observe that by (4.9), c′′p has an explicit expression.
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Proposition 7.4: Suppose that p ∈ (p0, 10/3). Then the function

(r∗,∞) 
 r �→ Ir

is decreasing.

Proof. Define f(r) = E(r1/2ut
+
r (u)) and set for brevity t(r) = t+r (u). Observe

from Proposition 4.6 that f is differentiable and

f ′(r) =
t(r)2

2

∫
|∇u|2 + rt(r)

2
q

∫
φuu

2 − λ

2
r

p
2−1t(r)

3p
2 −3

∫
|u|p.

From Lemma 7.3 we conclude that f ′(r) ≤ 2c′′p/r2. Fix r∗ < r1 < r2 and

u ∈ Mr1 . If r ∈ [r1, r2] then f
′(r) ≤ 2c′′p/r

2
1 . Therefore there exists θ ∈ (r1, r2)

such that

f(r2)− f(r1) = f ′(θ)(r2 − r1) ≤
2c′′p
r21

(r2 − r1),

and hence

E(r
1/2
2 ut(r2)) ≤ E(r

1/2
1 ut(r1)) +

2c′′p
r21

(r2 − r1),

which implies that Ir2 < Ir1 and the proof is finished.

As a consequence of Theorem 7.1 and Proposition 7.4 we have:

Theorem 7.5: Fix p ∈ (p0, 10/3). Then for each r ∈ (r∗, r∗0) there ex-

ists u ∈ N+
r ∪ N 0

r such that Ir = E(u).

Now we will show that for r near r∗0 the minimizer found in Theorem 7.5

belongs to N+
r . To this end we need to compare the energy of E restricted

to N 0
r with Ir.

Lemma 7.6: For each r > r∗, there exists a positive constant c such that

E(u) ≥ c

r
, ∀u ∈ N 0

r .

Proof. Indeed by using the pair of equations that characterize u ∈ N 0
r , that is⎧⎨

⎩rtA+ r2 q
4B − 3(p−2)

2p r
p
2 t

3p
2 −4λC = 0,

rA− 3(p−2)(3p−8)
4p r

p
2 t

3p
2 −5λC = 0,

we can deduce that

E(u) =
10− 3p

6(p− 2)

∫
|∇u|2, u ∈ N 0

r ,

therefore from Proposition 4.3 the proof is complete.
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Lemma 7.7: We have that

lim
r↑r∗0

Ir = 0.

Proof. As we observed beforeEr∗0=Ir∗0 and there exists w∈N+
r∗0

with E(w)=Ir∗0 .

Let u ∈ S1 be such that w = r∗0u
t+
r∗0

(u)
. Since E(w) = 0 we conclude from

the definition of r∗0 and Theorem 5.7 that r0(u) = r∗0 . Moreover, r∗ = r(u).

It follows that t+r (u) is well-defined for each r ∈ (r∗, r∗0). Since Ir ≥ 0 for

all r ∈ (r∗, r∗0) we obtain from Corollary 3 that

0 = lim
r↑r∗0

E(rut
+
r (u)) ≥ lim

r↑r∗0
Ir ≥ 0

and the proof is concluded.

Theorem 7.8: For each p ∈ (p0, 10/3) there exists ε > 0 such that for

each r ∈ (r∗0 − ε, r∗0), Ir is achieved. More specifically, there exists u ∈ N+
r

satisfying

Ir = E(u).

Proof. From Theorem 7.5 it remains to prove that u ∈ N+
r . Let c/r be the

constant given by Lemma 7.6. Given 0 < d < c/r, from Lemma 7.7 there

exists ε > 0 such that Ir < d for all r ∈ (r∗0−ε, r∗0). In particular, since Ir < c/r

it follows that u /∈ N 0
r for all r ∈ (r∗0 − ε, r∗0) and consequently u ∈ N+

r .

We can finish now the proof of Theorem 2.6. In fact (i) follows by Proposi-

tion 7.4 and Lemma 7.7; (ii) follows by Theorem 7.5 and (iii) follows by Theo-

rem 7.8.

8. The case p ∈ [10/3, 6)

This case was treated in [1], where existence of global minimizers over the

Nehari manifold N−
r was proved for small r. Their proof relies on the fact that

for small r the function

Jr = inf{E(u) : u ∈ N−
r }

is decreasing.
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Fix u ∈ S1 and consider the map

(8.1) f(r) := ϕr,u(t
−
r (u)),

where t−r (u) is the unique critical point of ϕr,u. By Proposition 4.5, the map f

is well-defined,

(i) for all r ∈ (r(u),∞), if p = 10/3 and r
2

∫ |∇u|2− rp/2

p λ
∫ |u|p < 0, in this

case r(u) being the unique r > 0 for which r
2

∫ |∇u|2 − rp/2

p λ
∫ |u|p = 0,

it coincides exactly with the value given in (5.1), justifying then the

same notation;

(ii) for all r ∈ (0,∞), if p ∈ (10/3, 6).

Now observe from Lemma 4.6 that (in both cases) f is C1 and

f ′(r) =ϕ′
r,u(t

−
r (u))

+
1

2

(
t−r (u)

2

∫
|∇u|2 + rt−r (u)q

∫
φuu

2 − λr
p
2−1t−r (u)

3p
2 −3

∫
|u|p

)

=
1

2

(
t−r (u)

2

∫
|∇u|2 + rt−r (u)q

∫
φuu

2 − λr
p
2−1t−r (u)

3p
2 −3

∫
|u|p

)
,

being (see Lemma 4.4)

0 = ϕ′
r,u(t

−
r (u))

= t−r (u)
∫

|∇u|2 + r2

4
q

∫
φuu

2 − 3(p− 2)

2p
rp/2t−r (u)

3p
2 −4λ

∫
|u|p.

For simplicity denote tr = t−r (u). It follows that f ′(r) = 0 if, and only if,

(8.2)

⎧⎨
⎩
rtr

∫ |∇u|2 + r2

4 q
∫
φuu

2 − 3(p−2)
2p rp/2t

3p
2 −4
r λ

∫ |u|p = 0,

t2r
∫ |∇u|2 + rtrq

∫
φuu

2 − λr
p
2−1t

3p
2 −3
r

∫ |u|p = 0.

From Proposition 3.1, system (8.2) has a unique solution (r(u), t(u)), where

r(u) =
(2(6− p)

5p− 12

) 3p−10
4(p−3)

( 3p

5p− 12

) 1
2(p−3)

Rp(u).

Note that r(u) = (97 )
3/2r(u) when p = 10/3 and that, by Proposition 3.6, we

have that

inf
u∈S1

r(u) > 0.
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Theorem 8.1: Suppose that u ∈ S1.

(i) If p = 10/3, then the function (r(u),∞) 
 r �→ f(r) is increasing.

(ii) If p ∈ (10/3, 6), then the function (0,∞) 
 r �→ f(r) is decreasing for

all r ∈ (0, r(u)) and increasing for r ∈ (r(u),∞).

Proof. Let tr = t−r (u). By multiplying the first equation of (8.2) by −4 and

substituting into the second one, we obtain that

(8.3) t2r

∫
|∇u|2 + rtrq

∫
φuu

2 − λr
p
2−1t

3p
2 −3
r

∫
|u|p = t2rh(r),

where

h(r) = −3

∫
|∇u|2 + 5p− 12

p
λr

p
2−1t

3p−10
2

r

∫
|u|p.

Since (8.3) means that 2f ′(r) = t2rh(r), we are reduced to studying the sign

of h.

(i) This item is direct since, for p = 10/3, h(r) > 0 for

r >
(15
7

)3/2

R10/3 =
(9
7

)3/2

r(u) = r(u).

(ii) We show that f ′(r) is negative for r < r(u) and positive for r > r(u).

Taking into account that tr is continuous (see Lemma 4.6) and f has a unique

critical point since the solution of (8.2) is unique, it is sufficient to show that

there exist some 0 < r1 < r(u) < r2 such that h(r1) < 0 and h(r2) > 0.

We start with the existence of r1. We claim that

(8.4) lim
r→0

h(r) < 0.

Indeed, if tr is bounded from above as r → 0, then (8.4) is obvious; therefore

let us assume that tr → ∞ as r → 0. Note from the first equation of (8.2) that

∫
|∇u|2 − 3(p− 2)

2p
rp/2−1t

3p−10
2

r λ

∫
|u|p = or(1),

and hence

rp/2−1t
3p−10

2
r λ

∫
|u|p =

2p

3(p− 2)

∫
|∇u|2 + or(1).
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Then

h(r) = −3

∫
|∇u|2 + 5p− 12

p
λr

p
2−1t

3p−10
2

r

∫
|u|p,

= −3

∫
|∇u|2 + 5p− 12

p

2p

3(p− 2)

∫
|∇u|2 + or(1),

=
p− 6

3p− 6

∫
|∇u|2 + or(1), as r → 0.

Therefore the claim is proved.

Now we prove the existence of r2. We claim that

(8.5) lim
r→+∞h(r) > 0.

Indeed, if tr is bounded away from 0 as r → 0, then (8.5) is obvious; therefore

let us assume that tr → 0 as r → ∞. Note from the first equation of (8.2) that∫
|∇u|2 − 3(p− 2)

2p
rp/2−1t

3p−10
2

r λ

∫
|u|p = − r

4tr
q

∫
φuu

2.

Since r/4tr → +∞ as r → +∞, we conclude that rp/2−1t
3p−10

2
r λ

∫ |u|p → +∞
as r → +∞ and the proof is complete.

Let p ∈ (10/3, 6) and, for r, c, d > 0, define

Mr =

{
u

‖u‖2 : u ∈ N−
r and

∫
|u|p ≥ c and

∫
|∇u|2 ≤ d

}
.

Lemma 8.2: Suppose that p∈(10/3, 6), r∈ [a, b] where 0 < a < b < infu∈S1 r(u)

and c, d > 0. Then there exists a negative constant c̃ = c̃(a, b, r, c, d) such

that f ′(r) < c̃ for all u ∈ Mr and all r ∈ [a, b].

Proof. In order to prove the lemma, it is sufficient to prove that the left hand

side of the second equation of system (8.2) is bounded from above by c̃ for all

u ∈ Mr and r ∈ [a, b]. From Theorem 8.1, we have that f ′(r) < 0 for all u ∈ S1.

Now note that f(r) = ϕr,u(t
−
r (u)) = ϕr,su(t

−
r (su)) for all s > 0 and therefore,

by choosing s = 1/‖∇u‖2, we can assume that ‖∇u‖2 = 1 for all u ∈ Mr.

Suppose on the contrary that there exists a sequence {un} ⊂ Mr satisfying

‖∇un‖2 = 1 and corresponding sequences {tn} ⊂ (0,+∞), {rn} ⊂ [a, b] such

that ⎧⎨
⎩rtn

∫ |∇un|2 + r2

4 q
∫
φunu

2
n − 3(p−2)

2p rp/2t
3p
2 −4
n λ

∫ |un|p = 0,

t2n
∫ |∇un|2 + rtnq

∫
φunu

2
n − λr

p
2−1t

3p
2 −3
n

∫ |un|p = on(1).
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From Proposition 4.3 and the condition
∫ |∇utnn |2 ≤ d we conclude that {tn} is

a bounded sequence which is also bounded away from zero; therefore
∫ |un|p is

bounded away from zero and, arguing as in the proof of Lemma 6.4, we conclude

that rn = r(un)+on(1) ≥ infu∈S1 r(u)+on(1) > b+ε+on(1) for some ε, which

is a contradiction. The proof is complete.

Lemma 8.3: Suppose that p ∈ (10/3, 6). Then Jr > 0 and every minimizing

sequence is bounded and non-vanishing.

Proof. Note that

(8.6) E(u) =
3p− 10

6(p− 2)

∫
|∇u|2 + 3p− 8

12(p− 2)

∫
φuu

2, ∀u ∈ N−
r .

Therefore from Proposition 4.3 we deduce that Jr > 0. If {un} is a minimizing

sequence, then from (8.6) we conclude that {‖∇un‖2} is bounded and hence

{un} is bounded in H1(R3). Moreover, this sequence can not vanish, since on

the contrary, we would obtain from the equation∫
|∇un|2 + q

4

∫
φunu

2
n − 3(p− 2)

2p
λ

∫
|un|p = 0

that
∫ |∇un|2 → 0 which contradicts Jr > 0.

Theorem 8.4: The function (0,∞) 
 r �→ Jr is decreasing over the interval

(0, infu∈S1 r(u)).

Proof. Fix 0 < r1 < r2 < infu∈S1 , r(u) < r∗ and let {un} ⊂ N+
r1 be a minimizing

sequence to Ir1 . From the mean value theorem we have that

Jr2 ≤ ϕr2,un(t
−
r2(un)) = ϕr1,un(t

−
r1(un)) + f ′(θn)(r2 − r1), ∀n ∈ N,

where θn ∈ (r1, r2). From Lemma 8.3, {un} being bounded and non-vanishing, it

follows that {un/‖un‖2}⊂Mr1 and therefore {un/‖un‖2}⊂Mr for all r∈ [r1, r2].

From Lemma 8.2 we conclude that f ′(θn)(r2 − r1) < c(r2 − r1) where c < 0. As

a consequence

Jr2 ≤ Jr1 + c(r2 − r1),

and the proof is complete.

Now we can conclude the proof of our last theorem.

8.1. Proof of Theorem 2.7. Since by the previous theorem Jr is decreasing,

the result follows by [1].
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Appendix A. New inequalities

We conclude with some estimates; in particular, the second one is new in the

literature.

Theorem A.1: The following hold:

(i) for each p ∈ (2, 3), there exists a positive function fp : (0,∞)2 → R such

that if r1 < r2, then

Ir2 >
(r2
r1

)3

Ir1 + fp(r1, r2)λ
(r1
r2

)p−3[(r1
r2

)2(p−3)

− 1
]
;

(ii) for each p ∈ (3, 10/3) and r∗ < r1 < r2, then

Ir2 <
(r2
r1

)3

Ir1 −
c′p
r1

(r2
r1

)p[(r2
r1

)2(p−3)

− 1
]
,

where c′p > 0 is the constant given in Proposition 4.3.

Proof. (i) Indeed, fix r1 < r2 and take u ∈ Mr2 satisfying E(r
1/2
2 ut(r2)) < 0. For

simplicity we set ti = t(ri), i = 1, 2. From Lemma 6.3 we know that u ∈ Mr1

and E(r
1/2
1 ut1) < 0, which implies that t1 is a global minimum for the fiber

map ϕr1,u and therefore

E(r
1/2
2 ut2) =

r32
r31
E
(
r
1/2
1 u

t2
r1
r2

)
+
λ

p

(r1
r2

)p−3[(r1
r2

)2(p−3)

− 1
] ∫

|r1/22 ut2 |p,

>
r32
r31
E(r

1/2
1 ut1) +

λ

p

(r1
r2

)p−3[(r1
r2

)2(p−3)

− 1
] ∫

|r1/22 ut2 |p.

Since p ∈ (2, 3), it follows that (r1/r2)
2(p−3) − 1 > 0, therefore if {un} ⊂ Mr2

is choosen in such a way that {r1/22 ut2n } is a minimizing sequence for Ir2 , since

it must be non-vanishing we obtain that

Ir2 >
r32
r31
Ir1 + fp(r1, r2)λ

(r1
r2

)p−3[(r1
r2

)2(p−3)

− 1
]
.
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(ii) Indeed, fix r∗ < r1 < r2 and take u ∈ Mr1 . For simplicity, let again

ti = t(ri) for i = 1, 2 and set

Q(u) :=

∫
|∇u|2 + q

4

∫
φuu

2 − 3(p− 2)

2p
λ

∫
|u|p.

Observe that

Q(r
1/2
1 ut1) = t1r1

∫
|∇u|2 + r21

4
q

∫
φuu

2 − 3(p− 2)

2p
t
3p
2 −4
1 r

p
2
1 λ

∫
|u|p

=
r31
r32
Q(r

1/2
2 ut1

r2
r1 )+

3(p− 2)

2p
λ
(r2
r1

)p−3[(r2
r1

)2(p−3)

−1
]∫

|r1/21 ut1 |p.

Since Q(r
1/2
1 ut1) = 0, r1 < r2 and p > 3, we conclude that

Q(r
1/2
2 ut1

r2
r1 ) < 0,

and hence from Proposition 4.5 item (III)-(1), it follows that t−r (u) < t1
r2
r1
< t2.

Therefore

(A.1)

E(r
1/2
1 ut1) =

r31
r32
E(r

1/2
2 ut1

r2
r1 )+

λ

p

(r2
r1

)p−3[(r2
r1

)2(p−3)

−1
]∫

|r1/21 ut1 |p,

>
r31
r32
E(r

1/2
2 ut2) +

λ

p

(r2
r1

)p−3[(r2
r1

)2(p−3)

− 1
] ∫

|r1/21 ut1 |p.

Since r
1/2
1 ut1 ∈ Nr1 , it follows from Proposition 4.3 that there exists a con-

stant c′p > 0 such that ∫
|r1/21 ut1 |p ≥ c′p

λr1
, ∀u ∈ Mr1 ,

and consequently from (A.1) we conclude that

E(r
1/2
1 ut1) ≥ r31

r32
E(r

1/2
2 ut2) +

c′p
r1

(r2
r1

)p−3[(r2
r1

)2(p−3)

− 1
]
, ∀u ∈ Mr1 .

Therefore

Ir2 <
(r2
r1

)3

Ir1 −
c′p
r1

(r2
r1

)p[(r2
r1

)2(p−3)

− 1
]

which concludes the proof.
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